Problem-Solving Strategy for solving the Complex Power
STEP 1. Calculate the amplitude of $\mathbf S_L$ using $S_L=\frac{P}{\cos\theta}=\frac{P}{pf}$ and then determine
$\mathbf S_L=S\angle \theta$
STEP 2. Use following equation to calculate $\mathbf I_L$
$\mathbf I_L=[\frac{\mathbf S_L}{\mathbf V_L}]^*$
STEP 3. Then the complex power losses in the line are
$\mathbf S_{loss}=I_L^2\mathbf Z_{loss}$
STEP 4. Therefore, the complex power at the source is
$\mathbf S_{S}=\mathbf S_L+\mathbf S_{loss}$
PROBLEM:
Note: This post is based on Irwin's Basic Engineering Circuit Analysis 11th ed.
If there are any errors in solution, please let me know in the comments
SOLUTION:
Complex power of each load is
$\mathbf S_1=\frac{20000}{0.7}\angle -\cos^{-1}(0.7)=28571.43\angle -45.573^{\circ}VA$
$\mathbf S_2=12000\angle \cos^{-1}(0.9)=12000\angle 25.842^{\circ}VA$
So the total complex power of loads is
$\mathbf S_L=\mathbf S_1+\mathbf S_2=30800-15173.4j=34334.7\angle -26.227^{\circ}VA$
Since $\mathbf S_L=\mathbf V_L \mathbf I_L^*$
$\mathbf I_L=[\frac{34334.7\angle -26.227^{\circ}}{240\angle 0^{\circ}}]^*=128.33+63.223j=143.06\angle 26.227^{\circ}A rms$
Also, the complex power losses in the line is
$\mathbf S_{loss}=(143.06)^2(0.05+0.2j)=1023.3+4093.23j=4219.21\angle 75.964^{\circ}VA$
Therefore, the complex power supplied by the source is
$\mathbf S_S=31823.26-11080.254j=33697.06\angle -19.197^{\circ}VA$
The power factor of the source is
$pf=\cos(-19.197^{\circ})=0.9444$ leading
And the source voltage is
$\mathbf V_S=\frac{33697.06\angle -19.197^{\circ}}{[143.06\angle 26.227^{\circ}]^*}=233.774+28.828j=235.545\angle 7.03^{\circ}Vrms$
$v_s(t)=333.111\cos(377t+7.03^{\circ})V$
Related posts: Instantaneous Power
Comments
Post a Comment