Problem-Solving Strategy for solving the Op-Amp Circuits
STEP 1. Use the ideal op-amp model: $A_o=\infty$, $R_i=\infty$, $R_o=0$
$\Rightarrow$ $i_+=i_-=0$, $v_+=v_-$
STEP 2. Apply nodal analysis to the resulting circuit.
STEP 3. Solve nodal equations to express the output voltage in terms of the op-amp input signals.
PROBLEM:
Note: This post is based on Irwin's Basic Engineering Circuit Analysis 11th ed.
If there are any errors in solution, please let me know in the comments
SOLUTION:
If we assume an ideal op-amp, its condition is as follows:
$i_+=i_-=0$, $v_+=v_-$
The node equations for the network are
$\frac{v_3-v_1}{R_2}=\frac{v_1-v_2}{R_1}=\frac{v_2-v_4}{R_2}$
$\frac{v_4-v_5}{R_3}=\frac{v_5}{R_4}$
$\frac{v_3-v_5}{R_3}=\frac{v_5-v_o}{R_4}$
To find $v_o$, $v_3$ and $v_5$ should be expressed in terms of $v_1$ and $v_2$, which are
$v_3=(1+\frac{R_2}{R_1})v_1-\frac{R_2}{R_1}v_2$
$v_5=-\frac{R_2R_4}{R_1(R_3+R_4)}v_1+(1+\frac{R_2}{R_1})(\frac{R_4}{R_3+R_4})v_2$
Since $v_o=-\frac{R_4}{R_3}v_3+(1+\frac{R_4}{R_3})v_5$
$v_o=\frac{R_4}{R_3}(1+\frac{2R_2}{R_1})(v_2-v_1)$
Related Post: Nodal Analysis Technique


Comments
Post a Comment